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PATH INTEGRAL COMPUTATION OF THE
LOW TEMPERATURE PROPERTIES OF LIQUID 4He

D. M. Ceperiey and E. L. Pollock
Lawrence Livermore National Laboratory
University of California
Livermore, CA 94550

Discretized path 1ntegra1 computations of the energy, structure factor,

4He in good accord

radial distribution function and momentum distribution of
with experiment are presented for temperatures down to 1°K at saturated vapor

pressure.



The unusual properties of 1iquid 4He at Jow temperature were attributed
to Bose-Einstein condensation by F. London 1n 1938.1 The strength of the
pair interaction between helium atoms however, has so far prevented a first
principles study of this transition in 4I-Ie. In this letter we present a
Monte Carlo discretized path integral computation of the density matrix for
Tiquid 4He for temperatures spanning this tréns1t1on which reproduces many
of the experimental results and is in principle capable of arbitrary accuracy.
We have assumed that the atoms interact via the Aziz pair Potentia\.2 .

The calcp]at1ons for the many body density matrii.s
p(R,R';:B) = Rie PHipey | ()

from which all equilibrium properties can be obtained, are based on the

identity
p(RR'GB) = f . . . ] p(R,Ry;e)p(Ry,Ry5T)
. p(R"_-'.R';t) dR-' .« o . dR"_] : (2)

where * = /M, W1, and the R variables denote points in the 3N

dimensional coordinate space. If an accurate many body density matrix is
known at some high temperature corresponding to t then equation 2 allows its
calculation at a lower teupgrature T = 1/Mkx. The density matrix for Bose

systems is obtained by summing over all permutations of particle 1abels.3

pg(R,R':B) = :.—,li,n(R-PR‘:B) (3)



Both the integral over paths and the sum over bermutations are performed by a
generalization of the Metropolis Honte'Car]o'uethod. A discussion of how this
is implemented for distinguishable particles 1s given in Ref. 4.  In extending
this work to'bosoqs several new techniques were required which will be
described in detail elsewhere but before presenting our results we briefly
mention two of the most important.

First (as in Ref. 4) the many bo&y density matrix at high'tenpefature in
Eq. (2) 1s taken as a product of one and two body density natrices.uhich is
exact in the high tenperatﬁre Timit. Here we have used the full two body
density matrix rather than the "end-point® approximation of eariier work. |
This 1s more accurate and allows larger values of t (smaller M) to be uSed.
in Eq. (2). The high temperature density matrix used was typically for a
temperature of 40 °K and thus paths of about 20 steps were needed for
computations near Tl. Had we been interested in only the structural
properties rather than, for example the kinetic energy, steps corresponding to
20 °K or less would have sufficed. We have checked the adequacy of the step
size by rerunning selected points using 80 °K steps. A thorough convergence
study of the earlier method was done 1n.4

Secondly a new method was used to construct trial pafﬁs for the
muliti-particie moves necéssary in sampling the permutations of Eq. (3), The
particular particles (here as many as 4) for which permutation changes are
attempted at one Monte Carlo move are 1n1t1a1iy’selected based on the frée
particle density matrix. New trial paths are then generated by a "bisection
method" which first generates new midpoints for paths and then new midpoints

for the remaining halves and so on with the poss1b111ty of rejecting the new

paths at any stage in the construction.



For permutations this is more efficient than the previous method of
sequentially generating new paths step by step sinée now 1mprobab1é paths may
be rejected at an early stage 1n their construction thus allowing many more
trial moves for a given amount of computer time. The rejection step ensures
that the accepted permmtgtions and paths reflect the correct density matrix
and not our initial guesses. Extensive tests of the convergence of the
distribution of permutations were carried out. |

Table 1 1ists some of the temperatures and densities at saturated Qapor
pressure (SVP) along with the potential and kinetic energy and some structural
properties where computations were done. The computed energy and specific
heat as a function of tempefature at SVP near Tl.are compared with
‘experiment in fig. 1. The simulations are for a periodic system of 64 atoms
and each run takes about one hour on the CRAY-1.. The finite number of
particles dsed in these simulations apparently depresses the computed energy
in the temperature region 2.1°K<T<3°K.

The effect of Bose statis;1cs on the radial distribution function, g(r),
is small as shown at T=2.0 °K §VP in fig. 2a where the neutron scattering
resultse are compared with the preient simulation. The dashed 1ine shown at
the first peak and first minimum is for distinguishable particles (only the
1Qent1ty permutation 1s allowed in Eq. (3)) and shows the slightly increased
spatial ordering attributed, via the uncgrta1nty pr1hc1p1e. to the decreased
ordering in momentum space when the condensate is suppressed. Similar good
agreemeﬁt is obtained between the computed radial distribution and structure
functions and the available neutron and x—rayg_scatter1ng data at other
temperatures and pressures in the 1iquid phase.

The single partiéle momentum distribution, n(k), is the Fourier transform

of the single particle off—d1a§ona1 density matrix, n(r)10



| pB(r1. rz...rn.'r1 +r, rz...rnia)dr ...drn
n(r) = - (4)

I ’B(rl'rz"‘rn' rye rz...rn;p) dr‘1...drn

which in terms of path integrals cofresponds to one open path beginning at
" and ending at r+r.o (Here fhe ry are the coordinates of atom {.)

At temperatures well above Tl uheré only the identity permutation is
important, this open path involves only one particle and is restricted to a
distance on the order of the thermal wavelength, #/ v 2mkT. This 1§
primarily due to the free particle part of the density matrix somewhat
modified by many body_effects. Below fx this open path may involve a long
cyclic permutation of many pgrt1c1es and the end-fo—end distance will become
macroscopic. The n(r) in fig. 2b shows this change in character on going
through the transition.il The initial curvature is proportional to the
kinetic energy and the value at large r 1s the fraction of paét1c1es in the
zero momentum state, the condensate. Figure 3a shows this condensate fraction
as a function of temperature. The condensate fractions plotted there are
obtained by assuming n(r) to be constant beyond 5A and averaging the values
between 5A and 7A to obtain no(T). Near Th n(;) reaches its

asymptotic value slowly and this procedure, because of the relatively small
system simulated and periodic boundary effects, 1s not relfable. For example
we find an N, (T) value of 1.4% at 2.5 °k significantly above the
experimental transition temperature. Larger systems must be considered to
determine the condensate fraction near T,. The momentum distribution of

the non-condensed particles, fig. 35, 1s both non-Gaussian and has a
temperature dependent shape. The present simulations are too noisy to

adequately test the predicted low momentum singularities in this

distribution.ls



In the past estimates of the condensate fraction have been nadeM based
on the hypothesis of Hyland, Rowlands, and Cunnings15 that the pair
correlation function at large r has a constaﬁt shape below Tu and s _
multipliied by (l-no(T))z. (Intuitively speaking the probability that
.ne1ther atom 1n the pair is in the condensate and thus spatially uniform).
We can only tést-this at moderate values of r but an gst1mate of no(T) based
on the second max1mum.'h3.'1{sted-1n'table 1 does not conflict with our
results. Estimates based on the first minimum, hz' at smaller r seem
definitely too small. Another intuitive estimate of no(T) assumes the
contribution of non-condensed atoms to the kinetic energy to be unchanged
below Ti where the condensate makes no contribution and thus the kinetic
energy 1s proportional to 1-nd(T). Fig. 3b suggests that this assunptjon is
only approximate, nevertheless this estimate, using table I, also accords with
our results due to the still sizeable error bars in the no(T) estimates.

Efforts are underway to extend these simulations to larger systems and to

determine other properties of 4l-le.
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TABLE I

TR (7Y >/ (°K) WM (K) ry(A) rp(A) ) h hy hy .
4.0 .01932 18.91 15.65 2.973 . 4.583 6.211  .356 -3 .040
3.333  .02072 ~20.38 16.00 2.962 - 4.552 6.240  .369 -.126  .050
2.857  .02142 -21.14 15.99 2,950 4,537 6.234  .381 -.134  .055
2.50 02179 -21.52 15.90 2.948 4.533 6.220  .383 -13% .08
2.353 02191 -21.60 15.75 2.945 4.526 © §.205  .382 -3 .060
2.222  .02197 ~21.70 15.89 2.945 -: 4.526 6.205  .382  -.139 061
2105  .02194 - -21.57 15.10 2.940 a.522 6.205  .374 -3 085
2.0 019 2151 . 15.05 . 2.942 . 4.525 6.211 .37 -132  .056

18 02186 -21.48 - N 2.939 4.52 6.200  .369 -321 .53
1.600  .02183 . -21.39  14.40 2.938 4.520 6.213  .368 -2 051
1379 .02182. '-21.35 14.23 2,93 4.515 6.206  .366 -123  .050
1.1765 . .02182  -21.35 RVRL 2.938 4.520 6.212  .366 -123  .050
2.0 .02191 -21.75 16.24 2.950 . 4.535 . 6.205  .385  -.140  .0B4

Computed potential and kinetic energies for various temperatures at SVP. The statistical uncertainty in the potential
energy 1s about .04 °K and .08 °K in the kinetic energy. The densities used are based on ref. 5. The last.six columns

give the first three zeros and extremal values of the pair correlation function h(r)=g(r)-1. The last row at 2.0 °K {is
for distinguishable particles. .
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FIGURE CAPTIONS

Energy and specific heat at SVP near TL’ The solid 1ines are

the experimental values. (The energy was taken frons'and the
specific heat from.s) The simulation resuits for the specific
heat were obtained by differencing the energy values. The energy
computed from ground'state-s1mu1at1ons7 is denoted by the cross.
The experimental value fbr TL (2.17 °K) 1s indicated by the

arrow.

Radial distribution function for “He at 2 °K and SVP. The solid
11ine is the neutron scattering result.’ The circles are
simulation resuits for bosons and the dashed 1ine is for
distinguishable particles.

Single particle off-diagonal density matrix at 1.18 °K (top curve
and open circles), 2.22 °K (middle curve and closed circles), and
3.33 °K (lower cﬁrve and open squares). Bernd 3 R the vertical
axis 1s enlarged by 10 times and the interpolating curves ﬁre

omitted. The crosses denote the ground state results12 which are

indistinguishable from the T=1.18°K results for r<3 A on this

graph.

Percentage of atoms with zero momentum, n (T), in %He at svp.
The indicated ground state value is frpﬁ ref. 7.
Momentum distributifon from simulations at temperatures of 3.33 °K

(—), 2.22 °K (---), 1.18 °K(o0), and for distinguishable

.particles at 2.22 °K(e).
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